The online dating market continues to grow, with apps becoming the primary way people meet romantic partners. This guide covers everything you need to build a successful dating application, from matching algorithms to safety features.
Market Overview
Key Statistics:
- Global dating app market: $9.6 billion (2024)
- Expected growth: 7.4% CAGR through 2030
- 350+ million users worldwide
- Average revenue per user: $15-25/month
Top Players:
- Tinder (75M+ monthly users)
- Bumble (45M+ monthly users)
- Hinge (23M+ monthly users)
- OkCupid (10M+ monthly users)
- Match.com (8M+ subscribers)
Types of Dating Apps
1. Swipe-Based Apps
- Quick matching
- Photo-focused
- Location-based
- Gamified experience
Examples: Tinder, Bumble, Badoo
2. Compatibility-Based Apps
- Detailed questionnaires
- Algorithm matching
- Personality insights
- Serious relationships
Examples: eHarmony, Match.com, OkCupid
3. Niche Dating Apps
- Religious (Christian Mingle, JDate)
- LGBTQ+ (Grindr, HER)
- Age-specific (Lumen for 50+)
- Interest-based (Farmers Only)
4. Video-First Apps
- Video profiles
- Live video dates
- Speed dating events
Examples: Snack, Sparked, Hinge (video prompts)
5. Women-First Apps
- Women initiate conversations
- Safety-focused design
- Verified profiles
Examples: Bumble, Pickable, The League
Essential Features
Core Features (MVP)
User Profiles
├── Photo upload (3-6 photos)
├── Bio/About me
├── Basic info (age, location, gender)
├── Preferences (age range, distance)
├── Prompts/Questions
└── Verification badge
Discovery
├── Swipe interface (like/pass)
├── Distance-based filtering
├── Age filtering
├── Super like/Boost
└── Undo last swipe
Matching
├── Mutual match notification
├── Match queue/list
├── Unmatch option
└── Match expiration (optional)
Messaging
├── Text chat
├── Photo sharing
├── GIF/emoji support
├── Read receipts
└── Block/Report
Safety
├── Photo verification
├── Block users
├── Report inappropriate content
├── Hide profile option
└── Unmatch removes chat history
Advanced Features
Discovery Enhancements
├── Advanced filters (height, education, etc.)
├── Passport (change location)
├── Top Picks (curated matches)
├── See who liked you
├── Rewind unlimited
└── Incognito mode
Communication
├── Voice messages
├── Video calls
├── Icebreaker prompts
├── Roses/Super likes
├── Priority messaging
└── Read receipts
AI Features
├── Smart photos (auto-arrange)
├── Bio suggestions
├── Compatibility scores
├── Conversation starters
├── Match predictions
└── Scam detection
Social Features
├── Mutual friends display
├── Instagram integration
├── Spotify integration
├── Group matching
├── Date spot suggestions
└── Date confirmation
Safety & Trust
├── ID verification
├── Video verification
├── Background checks
├── Photo authenticity AI
├── Safety center
├── Date check-in feature
└── Emergency contacts
Matching Algorithms
1. Collaborative Filtering
# Users who liked similar profiles might like each other
def collaborative_match(user_id):
# Get users who liked similar profiles
user_likes = get_user_likes(user_id)
similar_users = db.query("""
SELECT user_id, COUNT(*) as common_likes
FROM likes
WHERE profile_id IN %(user_likes)s
AND user_id != %(user_id)s
GROUP BY user_id
HAVING COUNT(*) >= 3
ORDER BY common_likes DESC
""", {'user_likes': user_likes, 'user_id': user_id})
# Get profiles that similar users liked
recommendations = []
for similar_user in similar_users:
their_likes = get_user_likes(similar_user.user_id)
new_profiles = set(their_likes) - set(user_likes)
recommendations.extend(new_profiles)
return recommendations
2. ELO Rating System (Tinder-style)
class EloMatchingSystem:
K_FACTOR = 32
def calculate_expected_score(self, rating_a, rating_b):
return 1 / (1 + 10 ** ((rating_b - rating_a) / 400))
def update_ratings(self, swiper_rating, profile_rating, swiped_right):
expected = self.calculate_expected_score(swiper_rating, profile_rating)
actual = 1 if swiped_right else 0
# If high-rated user swipes right on lower-rated user,
# the lower-rated user's score increases more
new_profile_rating = profile_rating + self.K_FACTOR * (actual - expected)
return new_profile_rating
def get_matches(self, user):
user_elo = user.elo_rating
# Show profiles within similar ELO range
# But occasionally show higher/lower for exploration
return db.query("""
SELECT * FROM profiles
WHERE elo_rating BETWEEN %(min_elo)s AND %(max_elo)s
AND id NOT IN (SELECT profile_id FROM swipes WHERE user_id = %(user_id)s)
ORDER BY
ABS(elo_rating - %(user_elo)s) + (RANDOM() * 100)
LIMIT 100
""", {
'min_elo': user_elo - 200,
'max_elo': user_elo + 200,
'user_id': user.id,
'user_elo': user_elo
})
3. Compatibility-Based Matching
def calculate_compatibility(user1, user2):
score = 0
max_score = 0
# Preference alignment
if user1.looking_for == user2.gender:
score += 20
max_score += 20
# Age preference
if user2.min_age <= user1.age <= user2.max_age:
score += 15
max_score += 15
# Distance
distance = calculate_distance(user1.location, user2.location)
if distance <= user2.max_distance:
score += 15 * (1 - distance / user2.max_distance)
max_score += 15
# Shared interests
common_interests = set(user1.interests) & set(user2.interests)
score += min(len(common_interests) * 5, 25)
max_score += 25
# Personality compatibility (if quiz taken)
if user1.personality and user2.personality:
personality_score = calculate_personality_match(
user1.personality,
user2.personality
)
score += personality_score * 25
max_score += 25
return (score / max_score) * 100
4. Machine Learning Approach
import tensorflow as tf
class MatchPredictionModel:
def __init__(self):
self.model = self.build_model()
def build_model(self):
# User features
user_input = tf.keras.Input(shape=(64,), name='user_features')
profile_input = tf.keras.Input(shape=(64,), name='profile_features')
# Shared embedding layer
shared_dense = tf.keras.layers.Dense(128, activation='relu')
user_embedding = shared_dense(user_input)
profile_embedding = shared_dense(profile_input)
# Combine embeddings
combined = tf.keras.layers.Concatenate()([
user_embedding,
profile_embedding
])
x = tf.keras.layers.Dense(64, activation='relu')(combined)
x = tf.keras.layers.Dropout(0.3)(x)
x = tf.keras.layers.Dense(32, activation='relu')(x)
# Output: probability of match
output = tf.keras.layers.Dense(1, activation='sigmoid')(x)
model = tf.keras.Model(
inputs=[user_input, profile_input],
outputs=output
)
model.compile(optimizer='adam', loss='binary_crossentropy')
return model
def predict_match(self, user_features, profile_features):
return self.model.predict([user_features, profile_features])
Technical Architecture
System Architecture
┌─────────────────────────────────────────────────────────┐
│ Mobile Apps │
│ (iOS / Android) │
└─────────────────────────┬───────────────────────────────┘
│
┌─────────────────────────▼───────────────────────────────┐
│ API Gateway │
│ (Rate Limiting, Auth, Load Balancing) │
└─────────────────────────┬───────────────────────────────┘
│
┌─────────────────────┼─────────────────────────────┐
│ │ │
┌───▼───┐ ┌────▼────┐ ┌─────▼─────┐
│ User │ │ Match │ │ Chat │
│Service│ │ Service │ │ Service │
└───┬───┘ └────┬────┘ └─────┬─────┘
│ │ │
┌───▼───┐ ┌────▼────┐ ┌─────▼─────┐
│PostgreSQL│ │ Redis │ │ MongoDB │
│ │ │ + ML │ │ │
└─────────┘ └─────────┘ └───────────┘
External Services:
├── Firebase (Auth, Push notifications)
├── AWS S3 (Photo storage)
├── Twilio (SMS verification)
├── Stripe (Payments)
├── Sendbird/Stream (Chat SDK)
├── Agora (Video calls)
└── ML Platform (Recommendations)
Tech Stack
Mobile:
Framework: React Native / Flutter
State: Redux / Riverpod
Animations: Reanimated / Lottie
Swipe: react-native-deck-swiper
Chat: Stream Chat / Sendbird
Video: Agora / Twilio
Push: Firebase Cloud Messaging
Backend:
Runtime: Node.js / Python
Framework: NestJS / FastAPI
Database: PostgreSQL + Redis
Chat: MongoDB / Firebase
Queue: Bull / Celery
ML: TensorFlow / PyTorch
Search: Elasticsearch
CDN: CloudFront
Database Schema
Users Table
CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
-- Auth
phone VARCHAR(20) UNIQUE,
email VARCHAR(255) UNIQUE,
password_hash VARCHAR(255),
-- Profile
first_name VARCHAR(50) NOT NULL,
birth_date DATE NOT NULL,
gender VARCHAR(20),
bio TEXT,
job_title VARCHAR(100),
company VARCHAR(100),
school VARCHAR(100),
-- Location
location GEOGRAPHY(POINT),
city VARCHAR(100),
-- Preferences
show_gender VARCHAR(20)[], -- looking for
age_min INT DEFAULT 18,
age_max INT DEFAULT 50,
distance_max INT DEFAULT 50, -- km
-- Settings
show_distance BOOLEAN DEFAULT true,
show_age BOOLEAN DEFAULT true,
discoverable BOOLEAN DEFAULT true,
-- Verification
phone_verified BOOLEAN DEFAULT false,
photo_verified BOOLEAN DEFAULT false,
id_verified BOOLEAN DEFAULT false,
-- Scoring
elo_rating INT DEFAULT 1000,
profile_score INT DEFAULT 0,
-- Subscription
subscription_tier VARCHAR(20) DEFAULT 'free',
subscription_expires TIMESTAMP,
-- Activity
last_active TIMESTAMP DEFAULT NOW(),
created_at TIMESTAMP DEFAULT NOW()
);
CREATE INDEX idx_users_location ON users USING GIST(location);
CREATE INDEX idx_users_active ON users(last_active DESC);
CREATE INDEX idx_users_elo ON users(elo_rating);
Photos Table
CREATE TABLE photos (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user_id UUID REFERENCES users(id) ON DELETE CASCADE,
url VARCHAR(500) NOT NULL,
thumbnail_url VARCHAR(500),
position INT NOT NULL, -- 0-5, order in profile
is_primary BOOLEAN DEFAULT false,
-- Verification
is_verified BOOLEAN DEFAULT false,
verification_score FLOAT,
-- Moderation
moderation_status VARCHAR(20) DEFAULT 'pending',
-- pending, approved, rejected
moderation_reason TEXT,
created_at TIMESTAMP DEFAULT NOW()
);
CREATE INDEX idx_photos_user ON photos(user_id);
Swipes Table
CREATE TABLE swipes (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user_id UUID REFERENCES users(id),
profile_id UUID REFERENCES users(id),
action VARCHAR(10) NOT NULL, -- like, pass, super_like
created_at TIMESTAMP DEFAULT NOW(),
UNIQUE(user_id, profile_id)
);
CREATE INDEX idx_swipes_user ON swipes(user_id);
CREATE INDEX idx_swipes_profile ON swipes(profile_id);
CREATE INDEX idx_swipes_action ON swipes(action) WHERE action = 'like';
Matches Table
CREATE TABLE matches (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user1_id UUID REFERENCES users(id),
user2_id UUID REFERENCES users(id),
matched_at TIMESTAMP DEFAULT NOW(),
-- Status
status VARCHAR(20) DEFAULT 'active',
-- active, unmatched_by_user1, unmatched_by_user2
-- Chat
last_message_at TIMESTAMP,
last_message_preview TEXT,
UNIQUE(user1_id, user2_id)
);
CREATE INDEX idx_matches_users ON matches(user1_id, user2_id);
Safety Features Implementation
Photo Verification
// Using face comparison API
const verifyPhoto = async (userId, selfieUrl) => {
// Get user's profile photos
const profilePhotos = await getProfilePhotos(userId);
// Compare selfie with each profile photo
for (const photo of profilePhotos) {
const result = await faceComparisonAPI.compare({
source: selfieUrl,
target: photo.url,
similarity_threshold: 0.8
});
if (result.similarity < 0.8) {
return {
verified: false,
reason: 'Photos do not match'
};
}
}
// Update verification status
await db.users.update(userId, {
photo_verified: true,
verified_at: new Date()
});
return { verified: true };
};
Content Moderation
// Automated content screening
const moderateContent = async (content, type) => {
const checks = [];
if (type === 'photo') {
// NSFW detection
const nsfwResult = await nsfwDetector.analyze(content.url);
if (nsfwResult.score > 0.8) {
return { approved: false, reason: 'Inappropriate content' };
}
// Face detection (ensure it's a person)
const faceResult = await faceDetector.detect(content.url);
if (faceResult.faces.length === 0) {
return { approved: false, reason: 'No face detected' };
}
}
if (type === 'text') {
// Profanity filter
const hasProfanity = profanityFilter.check(content.text);
if (hasProfanity) {
return { approved: false, reason: 'Inappropriate language' };
}
// Contact info detection
const hasContactInfo = detectContactInfo(content.text);
if (hasContactInfo) {
return { approved: false, reason: 'Contact info not allowed in bio' };
}
}
return { approved: true };
};
Monetization Strategies
Freemium Model
| Feature | Free | Plus ($14.99/mo) | Gold ($29.99/mo) |
|---|---|---|---|
| Swipes/day | 100 | Unlimited | Unlimited |
| See who likes | No | No | Yes |
| Rewinds | 1/day | 5/day | Unlimited |
| Super Likes | 1/day | 5/day | 5/day |
| Passport | No | Yes | Yes |
| Boosts | No | 1/month | 5/month |
| Incognito | No | No | Yes |
| Ad-free | No | Yes | Yes |
A La Carte Purchases
Boost (30 min priority): $4.99
Super Like pack (5): $9.99
Read receipts: $2.99/month
Profile highlights: $1.99/month
Development Cost Breakdown
MVP Dating App
Design: $10,000 - $18,000
├── User flows
├── Profile design
├── Swipe interface
├── Chat UI
└── Brand identity
Development: $45,000 - $75,000
├── User authentication
├── Profile management
├── Discovery/swiping
├── Matching system
├── Basic chat
├── Push notifications
└── iOS + Android
Backend: $20,000 - $35,000
├── API development
├── Matching algorithm
├── Real-time chat
├── Photo storage/CDN
├── Admin panel
└── Moderation tools
TOTAL MVP: $75,000 - $128,000
Timeline: 4-6 months
Full-Featured Platform
TOTAL: $180,000 - $350,000
Timeline: 9-14 months
Includes:
├── Advanced matching AI
├── Video chat
├── Photo verification
├── Subscription system
├── Advanced filters
├── Events/groups
├── Analytics dashboard
├── Moderation tools
└── Scalable infrastructure
Launch Checklist
Pre-Launch
- Photo moderation system tested
- Matching algorithm validated
- Chat reliability verified
- Push notifications working
- Payment integration tested
- Age verification implemented
- Privacy policy/Terms ready
Safety
- Block/Report functioning
- Content moderation active
- User verification options
- Emergency contacts feature
- Safety tips displayed
App Store
- Age rating set (17+/Mature)
- Screenshots approved
- Privacy labels completed
- Dating app guidelines followed
Conclusion
Building a dating app requires balancing engaging features with user safety. Focus on a smooth swiping experience, reliable matching, and robust safety features. Start with a specific niche or unique angle to differentiate from established players.
Ready to build your dating platform? Contact Hevcode for expert dating app development. We have experience with matching algorithms, real-time chat, and safety systems.