Back to Blog

Dating App Development Guide 2026: Features, Cost & Matching Algorithms

Complete guide to building a dating app. Learn essential features, matching algorithms, safety features, monetization strategies, and development costs.

Hevcode Team
January 14, 2026

The online dating market continues to grow, with apps becoming the primary way people meet romantic partners. This guide covers everything you need to build a successful dating application, from matching algorithms to safety features.

Market Overview

Key Statistics:

  • Global dating app market: $9.6 billion (2024)
  • Expected growth: 7.4% CAGR through 2030
  • 350+ million users worldwide
  • Average revenue per user: $15-25/month

Top Players:

  • Tinder (75M+ monthly users)
  • Bumble (45M+ monthly users)
  • Hinge (23M+ monthly users)
  • OkCupid (10M+ monthly users)
  • Match.com (8M+ subscribers)

Types of Dating Apps

1. Swipe-Based Apps

  • Quick matching
  • Photo-focused
  • Location-based
  • Gamified experience

Examples: Tinder, Bumble, Badoo

2. Compatibility-Based Apps

  • Detailed questionnaires
  • Algorithm matching
  • Personality insights
  • Serious relationships

Examples: eHarmony, Match.com, OkCupid

3. Niche Dating Apps

  • Religious (Christian Mingle, JDate)
  • LGBTQ+ (Grindr, HER)
  • Age-specific (Lumen for 50+)
  • Interest-based (Farmers Only)

4. Video-First Apps

  • Video profiles
  • Live video dates
  • Speed dating events

Examples: Snack, Sparked, Hinge (video prompts)

5. Women-First Apps

  • Women initiate conversations
  • Safety-focused design
  • Verified profiles

Examples: Bumble, Pickable, The League

Essential Features

Core Features (MVP)

User Profiles
├── Photo upload (3-6 photos)
├── Bio/About me
├── Basic info (age, location, gender)
├── Preferences (age range, distance)
├── Prompts/Questions
└── Verification badge

Discovery
├── Swipe interface (like/pass)
├── Distance-based filtering
├── Age filtering
├── Super like/Boost
└── Undo last swipe

Matching
├── Mutual match notification
├── Match queue/list
├── Unmatch option
└── Match expiration (optional)

Messaging
├── Text chat
├── Photo sharing
├── GIF/emoji support
├── Read receipts
└── Block/Report

Safety
├── Photo verification
├── Block users
├── Report inappropriate content
├── Hide profile option
└── Unmatch removes chat history

Advanced Features

Discovery Enhancements
├── Advanced filters (height, education, etc.)
├── Passport (change location)
├── Top Picks (curated matches)
├── See who liked you
├── Rewind unlimited
└── Incognito mode

Communication
├── Voice messages
├── Video calls
├── Icebreaker prompts
├── Roses/Super likes
├── Priority messaging
└── Read receipts

AI Features
├── Smart photos (auto-arrange)
├── Bio suggestions
├── Compatibility scores
├── Conversation starters
├── Match predictions
└── Scam detection

Social Features
├── Mutual friends display
├── Instagram integration
├── Spotify integration
├── Group matching
├── Date spot suggestions
└── Date confirmation

Safety & Trust
├── ID verification
├── Video verification
├── Background checks
├── Photo authenticity AI
├── Safety center
├── Date check-in feature
└── Emergency contacts

Matching Algorithms

1. Collaborative Filtering

# Users who liked similar profiles might like each other
def collaborative_match(user_id):
    # Get users who liked similar profiles
    user_likes = get_user_likes(user_id)

    similar_users = db.query("""
        SELECT user_id, COUNT(*) as common_likes
        FROM likes
        WHERE profile_id IN %(user_likes)s
        AND user_id != %(user_id)s
        GROUP BY user_id
        HAVING COUNT(*) >= 3
        ORDER BY common_likes DESC
    """, {'user_likes': user_likes, 'user_id': user_id})

    # Get profiles that similar users liked
    recommendations = []
    for similar_user in similar_users:
        their_likes = get_user_likes(similar_user.user_id)
        new_profiles = set(their_likes) - set(user_likes)
        recommendations.extend(new_profiles)

    return recommendations

2. ELO Rating System (Tinder-style)

class EloMatchingSystem:
    K_FACTOR = 32

    def calculate_expected_score(self, rating_a, rating_b):
        return 1 / (1 + 10 ** ((rating_b - rating_a) / 400))

    def update_ratings(self, swiper_rating, profile_rating, swiped_right):
        expected = self.calculate_expected_score(swiper_rating, profile_rating)
        actual = 1 if swiped_right else 0

        # If high-rated user swipes right on lower-rated user,
        # the lower-rated user's score increases more
        new_profile_rating = profile_rating + self.K_FACTOR * (actual - expected)

        return new_profile_rating

    def get_matches(self, user):
        user_elo = user.elo_rating

        # Show profiles within similar ELO range
        # But occasionally show higher/lower for exploration
        return db.query("""
            SELECT * FROM profiles
            WHERE elo_rating BETWEEN %(min_elo)s AND %(max_elo)s
            AND id NOT IN (SELECT profile_id FROM swipes WHERE user_id = %(user_id)s)
            ORDER BY
                ABS(elo_rating - %(user_elo)s) + (RANDOM() * 100)
            LIMIT 100
        """, {
            'min_elo': user_elo - 200,
            'max_elo': user_elo + 200,
            'user_id': user.id,
            'user_elo': user_elo
        })

3. Compatibility-Based Matching

def calculate_compatibility(user1, user2):
    score = 0
    max_score = 0

    # Preference alignment
    if user1.looking_for == user2.gender:
        score += 20
    max_score += 20

    # Age preference
    if user2.min_age <= user1.age <= user2.max_age:
        score += 15
    max_score += 15

    # Distance
    distance = calculate_distance(user1.location, user2.location)
    if distance <= user2.max_distance:
        score += 15 * (1 - distance / user2.max_distance)
    max_score += 15

    # Shared interests
    common_interests = set(user1.interests) & set(user2.interests)
    score += min(len(common_interests) * 5, 25)
    max_score += 25

    # Personality compatibility (if quiz taken)
    if user1.personality and user2.personality:
        personality_score = calculate_personality_match(
            user1.personality,
            user2.personality
        )
        score += personality_score * 25
        max_score += 25

    return (score / max_score) * 100

4. Machine Learning Approach

import tensorflow as tf

class MatchPredictionModel:
    def __init__(self):
        self.model = self.build_model()

    def build_model(self):
        # User features
        user_input = tf.keras.Input(shape=(64,), name='user_features')
        profile_input = tf.keras.Input(shape=(64,), name='profile_features')

        # Shared embedding layer
        shared_dense = tf.keras.layers.Dense(128, activation='relu')

        user_embedding = shared_dense(user_input)
        profile_embedding = shared_dense(profile_input)

        # Combine embeddings
        combined = tf.keras.layers.Concatenate()([
            user_embedding,
            profile_embedding
        ])

        x = tf.keras.layers.Dense(64, activation='relu')(combined)
        x = tf.keras.layers.Dropout(0.3)(x)
        x = tf.keras.layers.Dense(32, activation='relu')(x)

        # Output: probability of match
        output = tf.keras.layers.Dense(1, activation='sigmoid')(x)

        model = tf.keras.Model(
            inputs=[user_input, profile_input],
            outputs=output
        )
        model.compile(optimizer='adam', loss='binary_crossentropy')

        return model

    def predict_match(self, user_features, profile_features):
        return self.model.predict([user_features, profile_features])

Technical Architecture

System Architecture

┌─────────────────────────────────────────────────────────┐
│                    Mobile Apps                           │
│                  (iOS / Android)                         │
└─────────────────────────┬───────────────────────────────┘
                          │
┌─────────────────────────▼───────────────────────────────┐
│                    API Gateway                           │
│         (Rate Limiting, Auth, Load Balancing)            │
└─────────────────────────┬───────────────────────────────┘
                          │
    ┌─────────────────────┼─────────────────────────────┐
    │                     │                             │
┌───▼───┐           ┌────▼────┐                  ┌─────▼─────┐
│ User  │           │ Match   │                  │  Chat     │
│Service│           │ Service │                  │  Service  │
└───┬───┘           └────┬────┘                  └─────┬─────┘
    │                    │                             │
┌───▼───┐           ┌────▼────┐                  ┌─────▼─────┐
│PostgreSQL│        │ Redis   │                  │ MongoDB   │
│         │         │ + ML    │                  │           │
└─────────┘         └─────────┘                  └───────────┘

External Services:
├── Firebase (Auth, Push notifications)
├── AWS S3 (Photo storage)
├── Twilio (SMS verification)
├── Stripe (Payments)
├── Sendbird/Stream (Chat SDK)
├── Agora (Video calls)
└── ML Platform (Recommendations)

Tech Stack

Mobile:

Framework: React Native / Flutter
State: Redux / Riverpod
Animations: Reanimated / Lottie
Swipe: react-native-deck-swiper
Chat: Stream Chat / Sendbird
Video: Agora / Twilio
Push: Firebase Cloud Messaging

Backend:

Runtime: Node.js / Python
Framework: NestJS / FastAPI
Database: PostgreSQL + Redis
Chat: MongoDB / Firebase
Queue: Bull / Celery
ML: TensorFlow / PyTorch
Search: Elasticsearch
CDN: CloudFront

Database Schema

Users Table

CREATE TABLE users (
  id UUID PRIMARY KEY DEFAULT gen_random_uuid(),

  -- Auth
  phone VARCHAR(20) UNIQUE,
  email VARCHAR(255) UNIQUE,
  password_hash VARCHAR(255),

  -- Profile
  first_name VARCHAR(50) NOT NULL,
  birth_date DATE NOT NULL,
  gender VARCHAR(20),
  bio TEXT,
  job_title VARCHAR(100),
  company VARCHAR(100),
  school VARCHAR(100),

  -- Location
  location GEOGRAPHY(POINT),
  city VARCHAR(100),

  -- Preferences
  show_gender VARCHAR(20)[], -- looking for
  age_min INT DEFAULT 18,
  age_max INT DEFAULT 50,
  distance_max INT DEFAULT 50, -- km

  -- Settings
  show_distance BOOLEAN DEFAULT true,
  show_age BOOLEAN DEFAULT true,
  discoverable BOOLEAN DEFAULT true,

  -- Verification
  phone_verified BOOLEAN DEFAULT false,
  photo_verified BOOLEAN DEFAULT false,
  id_verified BOOLEAN DEFAULT false,

  -- Scoring
  elo_rating INT DEFAULT 1000,
  profile_score INT DEFAULT 0,

  -- Subscription
  subscription_tier VARCHAR(20) DEFAULT 'free',
  subscription_expires TIMESTAMP,

  -- Activity
  last_active TIMESTAMP DEFAULT NOW(),
  created_at TIMESTAMP DEFAULT NOW()
);

CREATE INDEX idx_users_location ON users USING GIST(location);
CREATE INDEX idx_users_active ON users(last_active DESC);
CREATE INDEX idx_users_elo ON users(elo_rating);

Photos Table

CREATE TABLE photos (
  id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
  user_id UUID REFERENCES users(id) ON DELETE CASCADE,

  url VARCHAR(500) NOT NULL,
  thumbnail_url VARCHAR(500),

  position INT NOT NULL, -- 0-5, order in profile
  is_primary BOOLEAN DEFAULT false,

  -- Verification
  is_verified BOOLEAN DEFAULT false,
  verification_score FLOAT,

  -- Moderation
  moderation_status VARCHAR(20) DEFAULT 'pending',
  -- pending, approved, rejected
  moderation_reason TEXT,

  created_at TIMESTAMP DEFAULT NOW()
);

CREATE INDEX idx_photos_user ON photos(user_id);

Swipes Table

CREATE TABLE swipes (
  id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
  user_id UUID REFERENCES users(id),
  profile_id UUID REFERENCES users(id),

  action VARCHAR(10) NOT NULL, -- like, pass, super_like

  created_at TIMESTAMP DEFAULT NOW(),

  UNIQUE(user_id, profile_id)
);

CREATE INDEX idx_swipes_user ON swipes(user_id);
CREATE INDEX idx_swipes_profile ON swipes(profile_id);
CREATE INDEX idx_swipes_action ON swipes(action) WHERE action = 'like';

Matches Table

CREATE TABLE matches (
  id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
  user1_id UUID REFERENCES users(id),
  user2_id UUID REFERENCES users(id),

  matched_at TIMESTAMP DEFAULT NOW(),

  -- Status
  status VARCHAR(20) DEFAULT 'active',
  -- active, unmatched_by_user1, unmatched_by_user2

  -- Chat
  last_message_at TIMESTAMP,
  last_message_preview TEXT,

  UNIQUE(user1_id, user2_id)
);

CREATE INDEX idx_matches_users ON matches(user1_id, user2_id);

Safety Features Implementation

Photo Verification

// Using face comparison API
const verifyPhoto = async (userId, selfieUrl) => {
  // Get user's profile photos
  const profilePhotos = await getProfilePhotos(userId);

  // Compare selfie with each profile photo
  for (const photo of profilePhotos) {
    const result = await faceComparisonAPI.compare({
      source: selfieUrl,
      target: photo.url,
      similarity_threshold: 0.8
    });

    if (result.similarity < 0.8) {
      return {
        verified: false,
        reason: 'Photos do not match'
      };
    }
  }

  // Update verification status
  await db.users.update(userId, {
    photo_verified: true,
    verified_at: new Date()
  });

  return { verified: true };
};

Content Moderation

// Automated content screening
const moderateContent = async (content, type) => {
  const checks = [];

  if (type === 'photo') {
    // NSFW detection
    const nsfwResult = await nsfwDetector.analyze(content.url);
    if (nsfwResult.score > 0.8) {
      return { approved: false, reason: 'Inappropriate content' };
    }

    // Face detection (ensure it's a person)
    const faceResult = await faceDetector.detect(content.url);
    if (faceResult.faces.length === 0) {
      return { approved: false, reason: 'No face detected' };
    }
  }

  if (type === 'text') {
    // Profanity filter
    const hasProfanity = profanityFilter.check(content.text);
    if (hasProfanity) {
      return { approved: false, reason: 'Inappropriate language' };
    }

    // Contact info detection
    const hasContactInfo = detectContactInfo(content.text);
    if (hasContactInfo) {
      return { approved: false, reason: 'Contact info not allowed in bio' };
    }
  }

  return { approved: true };
};

Monetization Strategies

Freemium Model

Feature Free Plus ($14.99/mo) Gold ($29.99/mo)
Swipes/day 100 Unlimited Unlimited
See who likes No No Yes
Rewinds 1/day 5/day Unlimited
Super Likes 1/day 5/day 5/day
Passport No Yes Yes
Boosts No 1/month 5/month
Incognito No No Yes
Ad-free No Yes Yes

A La Carte Purchases

Boost (30 min priority): $4.99
Super Like pack (5): $9.99
Read receipts: $2.99/month
Profile highlights: $1.99/month

Development Cost Breakdown

MVP Dating App

Design: $10,000 - $18,000
├── User flows
├── Profile design
├── Swipe interface
├── Chat UI
└── Brand identity

Development: $45,000 - $75,000
├── User authentication
├── Profile management
├── Discovery/swiping
├── Matching system
├── Basic chat
├── Push notifications
└── iOS + Android

Backend: $20,000 - $35,000
├── API development
├── Matching algorithm
├── Real-time chat
├── Photo storage/CDN
├── Admin panel
└── Moderation tools

TOTAL MVP: $75,000 - $128,000
Timeline: 4-6 months

Full-Featured Platform

TOTAL: $180,000 - $350,000
Timeline: 9-14 months

Includes:
├── Advanced matching AI
├── Video chat
├── Photo verification
├── Subscription system
├── Advanced filters
├── Events/groups
├── Analytics dashboard
├── Moderation tools
└── Scalable infrastructure

Launch Checklist

Pre-Launch

  • Photo moderation system tested
  • Matching algorithm validated
  • Chat reliability verified
  • Push notifications working
  • Payment integration tested
  • Age verification implemented
  • Privacy policy/Terms ready

Safety

  • Block/Report functioning
  • Content moderation active
  • User verification options
  • Emergency contacts feature
  • Safety tips displayed

App Store

  • Age rating set (17+/Mature)
  • Screenshots approved
  • Privacy labels completed
  • Dating app guidelines followed

Conclusion

Building a dating app requires balancing engaging features with user safety. Focus on a smooth swiping experience, reliable matching, and robust safety features. Start with a specific niche or unique angle to differentiate from established players.

Ready to build your dating platform? Contact Hevcode for expert dating app development. We have experience with matching algorithms, real-time chat, and safety systems.

Related Articles

Tags:Dating AppSocial AppMobile DevelopmentMatching AlgorithmIndustry Guide

Need help with your project?

We've helped 534+ clients build successful apps. Let's discuss yours.

Ready to Build Your App?

534+ projects delivered • 4.9★ rating • 6+ years experience

Let's discuss your project — no obligations, just a straightforward conversation.